Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Environ Monit Assess ; 195(6): 680, 2023 May 16.
Article in English | MEDLINE | ID: covidwho-2320181

ABSTRACT

COVID-19 lockdown has given us an opportunity to investigate the pollutant concentrations in response to the restricted anthropogenic activities. The atmospheric concentration levels of nitrogen dioxide (NO2), carbon monoxide (CO) and ozone (O3) have been analysed for the periods during the first wave of COVID-19 lockdown in 2020 (25th March-31st May 2020) and during the partial lockdowns due to second wave in 2021 (25th March-15th June 2021) across India. The trace gas measurements from Ozone Monitoring Instrument (OMI) and Atmosphere InfraRed Sounder (AIRS) satellites have been used. An overall decrease in the concentration of O3 (5-10%) and NO2 (20-40%) have been observed during the 2020 lockdown when compared with business as usual (BAU) period in 2019, 2018 and 2017. However, the CO concentration increased up to 10-25% especially in the central-west region. O3 and NO2 slightly increased or had no change in 2021 lockdown when compared with the BAU period, but CO showed a mixed variation prominently influenced by the biomass burning/forest fire activities. The changes in trace gas levels during 2020 lockdown have been predominantly due to the reduction in the anthropogenic activities, whereas in 2021, the changes have been mostly due to natural factors like meteorology and long-range transport, as the emission levels have been similar to that of BAU. Later phases of 2021 lockdown saw the dominant effect of rainfall events resulting in washout of pollutants. This study reveals that partial or local lockdowns have very less impact on reducing pollution levels on a regional scale as natural factors like atmospheric long-range transport and meteorology play deciding roles on their concentration levels.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Environmental Pollutants , Ozone , Humans , COVID-19/epidemiology , Air Pollution/analysis , Air Pollutants/analysis , Nitrogen Dioxide/analysis , Environmental Monitoring/methods , Communicable Disease Control , Ozone/analysis , Environmental Pollutants/analysis , Particulate Matter/analysis
2.
J Air Waste Manag Assoc ; 73(5): 374-393, 2023 05.
Article in English | MEDLINE | ID: covidwho-2317875

ABSTRACT

Following the outbreak of the COVID-19 pandemic, several papers have examined the effect of the pandemic response on urban air pollution worldwide. This study uses observed traffic volume and near-road air pollution data for black carbon (BC), oxides of nitrogen (NOx), and carbon monoxide (CO) to estimate the emissions contributions of light-duty and heavy-duty diesel vehicles in five cities in the continental United States. Analysis of mobile source impacts in the near-road environment has several health and environmental justice implications. Data from the initial COVID-19 response period, defined as March to May in 2020, were used with data from the same period over the previous two years to develop general additive models (GAMs) to quantify the emissions impact of each vehicle class. The model estimated that light-duty traffic contributes 4-69%, 14-65%, and 21-97% of BC, NOx, and CO near-road levels, respectively. Heavy-duty diesel traffic contributes an estimated 26-46%, 17-63%, and -7-18% of near-road levels of the three pollutants. The estimated mobile source impacts were used to calculate NOx to CO and BC to NOx emission ratios, which were between 0.21-0.32 µg m-3 NOx (µg m-3 CO)-1 and 0.013-0.018 µg m-3 BC (µg m-3 NOx)-1. These ratios can be used to assess existing emission inventories for use in determining air pollution standards. These results agree moderately well with recent National Emissions Inventory estimates and other empirically-derived estimates, showing similar trends among the pollutants. However, a limitation of this study was the recurring presence of an implausible air pollution impact estimate in 41% of the site-pollutant combinations, where a vehicle class was estimated to account for either a negative impact or an impact higher than the total estimated pollutant concentration. The variations seen in the GAM estimates are likely a result of location-specific factors, including fleet composition, external pollution sources, and traffic volumes.Implications: Drastic reductions in traffic and air pollution during the lockdowns of the COVID-19 pandemic present a unique opportunity to assess vehicle emissions. A General Additive Modeling approach is developed to relate traffic levels, observed air pollution, and meteorology to identify the amount vehicle types contribute to near-road levels of traffic-related air pollutants (TRAPs), which is important for future emission regulation and policy, given the significant health and environmental justice implications of vehicle-related pollution along major roadways. The model is used to evaluate emission inventories in the near-road environment, which can be used to refine existing estimates. By developing a locally data-driven method to readily characterize impacts and distinguish between heavy and light duty vehicle effects, local regulations can be used to target policies in major cities around the country, thus addressing local health disbenefits and disparities occurring as a result of exposure to near-road air pollution.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Environmental Pollutants , Humans , Air Pollutants/analysis , Particulate Matter/analysis , Pandemics , Environmental Monitoring/methods , COVID-19/epidemiology , Communicable Disease Control , Air Pollution/analysis , Vehicle Emissions/analysis , Environmental Pollutants/analysis , Soot/analysis
3.
Chemosphere ; 331: 138830, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2311558

ABSTRACT

Accurate and efficient predictions of pollutants in the atmosphere provide a reliable basis for the scientific management of atmospheric pollution. This study develops a model that combines an attention mechanism, convolutional neural network (CNN), and long short-term memory (LSTM) unit to predict the O3 and PM2.5 levels in the atmosphere, as well as an air quality index (AQI). The prediction results given by the proposed model are compared with those from CNN-LSTM and LSTM models as well as random forest and support vector regression models. The proposed model achieves a correlation coefficient between the predicted and observed values of more than 0.90, outperforming the other four models. The model errors are also consistently lower when using the proposed approach. Sobol-based sensitivity analysis is applied to identify the variables that make the greatest contribution to the model prediction results. Taking the COVID-19 outbreak as the time boundary, we find some homology in the interactions among the pollutants and meteorological factors in the atmosphere during different periods. Solar irradiance is the most important factor for O3, CO is the most important factor for PM2.5, and particulate matter has the most significant effect on AQI. The key influencing factors are the same over the whole phase and before the COVID-19 outbreak, indicating that the impact of COVID-19 restrictions on AQI gradually stabilized. Removing variables that contribute the least to the prediction results without affecting the model prediction performance improves the modeling efficiency and reduces the computational costs.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Deep Learning , Environmental Pollutants , Humans , Air Pollution/analysis , Air Pollutants/analysis , Environmental Pollutants/analysis , Environmental Monitoring/methods , Particulate Matter/analysis
4.
Molecules ; 28(8)2023 Apr 07.
Article in English | MEDLINE | ID: covidwho-2304352

ABSTRACT

Chloroquine phosphate (CQP) is effective in treating coronavirus disease 2019 (COVID-19); thus, its usage is rapidly increasing, which may pose a potential hazard to the environment and living organisms. However, there are limited findings on the removal of CQP in water. Herein, iron and magnesium co-modified rape straw biochar (Fe/Mg-RSB) was prepared to remove CQP from the aqueous solution. The results showed that Fe and Mg co-modification enhanced the adsorption efficiency of rape straw biochar (RSB) for CQP with the maximum adsorption capacity of 42.93 mg/g (at 308 K), which was about two times higher than that of RSB. The adsorption kinetics and isotherms analysis, as well as the physicochemical characterization analysis, demonstrated that the adsorption of CQP onto Fe/Mg-RSB was caused by the synergistic effect of pore filling, π-π interaction, hydrogen bonding, surface complexation, and electrostatic interaction. In addition, although solution pH and ionic strength affected the adsorption performance of CQP, Fe/Mg-RSB still had a high adsorption capability for CQP. Column adsorption experiments revealed that the Yoon-Nelson model better described the dynamic adsorption behavior of Fe/Mg-RSB. Furthermore, Fe/Mg-RSB had the potential for repeated use. Therefore, Fe and Mg co-modified biochar could be used for the remediation of CQP from contaminated water.


Subject(s)
COVID-19 , Environmental Pollutants , Water Pollutants, Chemical , Humans , Iron/chemistry , Magnesium , Environmental Pollutants/analysis , Water , COVID-19 Drug Treatment , Charcoal/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Kinetics
5.
Environ Sci Pollut Res Int ; 30(19): 55278-55297, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2288813

ABSTRACT

The transmission of pollutants in buses has an important impact on personal exposure to airborne particles and spread of the COVID-19 epidemic in enclosed spaces. We conducted the following real-time field measurements inside buses: CO2, airborne particle concentration, temperature, and relative humidity data during peak and off-peak hours in spring and autumn. Correlation analysis was adopted to evaluate the dominant factors influencing CO2 and particle mass concentrations in the vehicle. The cumulative personal exposure dose to particulate matter and reproduction number were calculated for passengers on a one-way trip. The results showed the in-cabin CO2 concentrations, with 22.11% and 21.27% of the total time exceeding 1000 ppm in spring and autumn respectively. In-cabin PM2.5 mass concentration exceeded 35 µm/m3 by 57.35% and 86.42% in spring and autumn, respectively. CO2 concentration and the cumulative number of passengers were approximately linearly correlated in both seasons, with R value up to 0.896. The cumulative number of passengers had the most impact on PM2.5 mass concentration among tested parameters. The cumulative personal exposure dose to PM2.5 during a one-way trip in autumn was up to 43.13 µg. The average reproductive number throughout the one-way trip was 0.26; it was 0.57 under the assumed extreme environment. The results of this study provide an important basic theoretical guidance for the optimization of ventilation system design and operation strategies aimed at reducing multi-pollutant integrated health exposure and airborne particle infection (such as SARS-CoV-2) risks.


Subject(s)
Air Pollutants , Air Pollution, Indoor , COVID-19 , Environmental Pollutants , Humans , Carbon Dioxide/analysis , SARS-CoV-2 , Respiratory Aerosols and Droplets , Particulate Matter/analysis , Air Pollutants/analysis , Motor Vehicles , China , Environmental Pollutants/analysis , Environmental Monitoring/methods , Air Pollution, Indoor/analysis , Environmental Exposure/analysis
6.
Int J Environ Res Public Health ; 20(5)2023 02 26.
Article in English | MEDLINE | ID: covidwho-2287064

ABSTRACT

This study aimed to analyze the main factors influencing air quality in Tangshan during COVID-19, covering three different periods: the COVID-19 period, the Level I response period, and the Spring Festival period. Comparative analysis and the difference-in-differences (DID) method were used to explore differences in air quality between different stages of the epidemic and different years. During the COVID-19 period, the air quality index (AQI) and the concentrations of six conventional air pollutants (PM2.5, PM10, SO2, NO2, CO, and O3-8h) decreased significantly compared to 2017-2019. For the Level I response period, the reduction in AQI caused by COVID-19 control measures were 29.07%, 31.43%, and 20.04% in February, March, and April of 2020, respectively. During the Spring Festival, the concentrations of the six pollutants were significantly higher than those in 2019 and 2021, which may be related to heavy pollution events caused by unfavorable meteorological conditions and regional transport. As for the further improvement in air quality, it is necessary to take strict measures to prevent and control air pollution while paying attention to meteorological factors.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Environmental Pollutants , Humans , Air Pollution/analysis , Air Pollutants/analysis , China , Environmental Pollutants/analysis , Particulate Matter/analysis , Environmental Monitoring/methods
7.
J Environ Manage ; 328: 116907, 2023 Feb 15.
Article in English | MEDLINE | ID: covidwho-2242506

ABSTRACT

Lockdowns enforced amid the pandemic facilitated the evaluation of the impact of emission reductions on air quality and the production regime of O3 under NOx reduction. Analysis of space-time variation of various pollutants (PM10, PM2.5, NOx, CO, O3 and VOC or TNMHC) through the lockdown phases at eight typical stations (Urban/Metro, Rural/high vegetation and coastal) is carried out. It reveals how the major pollutant (PM10 or PM2.5 or O3, or CO) differs from station to station as lockdowns progress depending on geography, land-use pattern and efficacy of lockdown implementation. Among the stations analyzed, Delhi (Chandnichowk), the most polluted (PM10 = 203 µgm-3; O3 = 17.4 ppbv) in pre-lockdown, experienced maximum reduction during the first phase of lockdown in PM2.5 (-47%), NO2 (-40%), CO (-37%) while O3 remained almost the same (2% reduction) to pre-lockdown levels. The least polluted Mahabaleshwar (PM10 = 45 µgm-3; O3 = 54 ppbv) witnessed relatively less reduction in PM2.5 (-2.9%), NO2 (-4.7%), CO (-49%) while O3 increased by 36% to pre-lockdown levels. In rural stations with lots of greenery, O3 is the major pollutant attributed to biogenic VOC emissions from vegetation besides lower NO levels. In other stations, PM2.5 or PM10 is the primary pollutant. At Chennai, Jabalpur, Mahabaleshwar and Goa, the deciding factor of Air Quality Index (AQI) remained unchanged, with reduced values. Particulate matter, PM10 decided AQI for three stations (dust as control component), and PM2.5 decided the same for two but within acceptable limits for stations. Improvement of AQI through control of dust would prove beneficial for Chennai and Patiala; anthropogenic emission control would work for Chandani chowk, Goa and Patiala; emission control of CO is required for Mahabaleshwar and Thiruvanathapuram. Under low VOC/NOx ratio conditions, O3 varies with the ratio, NO/NO2, with a negative (positive) slope indicating VOC-sensitive (NOx-sensitive) regime. Peak O3 isopleths as a function of NOx and VOC depicting distinct patterns suggest that O3 variation is entirely non-linear for a given NOx or VOC.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Environmental Pollutants , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Air Pollutants/analysis , Environmental Pollutants/analysis , Nitrogen Dioxide/analysis , Environmental Monitoring , Communicable Disease Control , India , Air Pollution/prevention & control , Air Pollution/analysis , Particulate Matter/analysis , Dust/analysis
8.
J Environ Public Health ; 2022: 9056476, 2022.
Article in English | MEDLINE | ID: covidwho-1909921

ABSTRACT

Illicit drug abuse and addiction are universal issues requiring international cooperation and interdisciplinary and multisectoral solutions. These addictive substances are utilized for recreational purposes worldwide, including in sub-Saharan Africa. On the other hand, conventional wastewater treatment facilities such as waste stabilization ponds lack the design to remove the most recent classes of pollutants such as illicit drug abuse. As a result, effluents from these treatment schemes contaminate the entire ecosystem. Public health officials are concerned about detecting these pollutants at alarming levels in some countries, with potential undesirable effects on aquatic species and increased health hazards through exposure to contaminated waters or recycling treated or untreated effluents in agriculture. Contaminants including illicit substances enter the environment by human excreta following illegal intake, spills, or through direct dumping, such as from clandestine laboratories, when their manufacturer does not follow accepted production processes. These substances, like other pharmaceuticals, have biological activity and range from pseudopersistent to highly persistent compounds; hence, they persist in the environment while causing harm to the ecosystem. The presence of powerful pharmacological agents such as cocaine, morphine, and amphetamine in water as complex combinations can impair aquatic organisms and human health. These compounds can harm human beings and ecosystem health apart from their low environmental levels. Therefore, this article examines the presence and levels of illicit substances in ecological compartments such as wastewater, surface and ground waters in sub-Saharan Africa, and their latent impact on the ecosystem. The information on the occurrences of illicit drugs and their metabolic products in the sub-Saharan Africa environment and their contribution to pharmaceutical load is missing. In this case, it is important to research further the presence, levels, distribution, and environmental risks of exposure to human beings and the entire ecosystem.


Subject(s)
Environmental Pollutants , Illicit Drugs , Water Pollutants, Chemical , Africa South of the Sahara , Ecosystem , Environmental Monitoring , Environmental Pollutants/analysis , Humans , Wastewater , Water Pollutants, Chemical/analysis
9.
F S Sci ; 3(3): 237-245, 2022 08.
Article in English | MEDLINE | ID: covidwho-1882626

ABSTRACT

OBJECTIVE: To assess if the unprecedented changes in lifestyle because of the lockdown initiated by the COVID-19 pandemic, which altered human behavior, and influenced purchase and consumption patterns, may have had an impact on the exposure to phthalates in Indian women undergoing in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI). To evaluate if the effects of the strict and lengthy lockdown in India, which promoted the new norms of stay-at-home and work-from-home, closure of beauty parlors, and restriction on public gatherings, may have contributed to a decrease in the exposure to phthalates like dibutyl phthalate and diethyl phthalate. These chemicals are found in many personal care products (PCPs) which include cosmetics and fragrances. To investigate if the extensive use of flexible single-use plastic in personal protective equipment like face masks/gloves and in plastic packaging used for online purchases, food takeaways, and home deliveries of essentials and groceries during the COVID-19 pandemic, in an attempt to provide a contact-free delivery system may have inadvertently led to an increase in exposure to phthalates like di(2-ethylhexyl) phthalate, di-isononyl phthalate, and di-isodecyl phthalate which are plasticizers used in manufacturing flexible plastic. DESIGN: A comparative study of the levels of six phthalate metabolites detected in follicular fluid (FF) of Indian women undergoing IVF/ICSI 1 year before and immediately after the lockdown initiated by the COVID-19 pandemic. SETTING: In vitro fertilization center in a large referral hospital in India. PATIENT(S): A total of 176 Indian women seeking treatment for infertility and undergoing oocyte retrieval were included after obtaining consent. Each woman contributed one FF sample to the study. Group A (n = 96) women (mean age, 34.0 [±3.9] years, and mean BMI, 25.4 [±4.8]) had their FF samples collected and screened between January 2019 and mid-March 2020, 1 year before the lockdown. Group B (n = 80) women (mean age, 33.9 [±4.1] years, and mean BMI, 25.0 [±4.4]) had their FF collected and screened post the lockdown between October 2020 and June 2021. Both groups were matched by age and BMI. INTERVENTION(S): The cryopreserved FF samples of 176 women were processed using enzymatic deconjugation as well as the solid-phase extraction technique, and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to detect the total levels of six phthalate metabolites. MAIN OUTCOME MEASURE(S): To evaluate the impact of the COVID-19 lockdown on the change in the phthalate metabolite levels in the FF of Indian women undergoing IVF/ICSI pre and post the lockdown. RESULT(S): The median levels of mono-n-butyl phthalate (1.64 ng/ml in group A vs. 0.93 ng/ml in group B; P<.001) and mono-ethyl phthalate (5.25 ng/ml in group A vs. 3.24 ng/ml in group B; P<.001) metabolites of dibutyl phthalate and diethyl phthalate found in PCPs including cosmetics and fragrances were significantly higher in the FF of 96 women (group A) compared with the levels seen in the FF of 80 women (group B). However, the median levels of mono-isononyl phthalate (0.11ng/ml in group A vs. 0.13 ng/ml in group B; P<.001), mono-isodecyl phthalate (0.11 ng/ml in group A vs. 0.14 ng/ml in group B; P<.001), and mono(2-ethyl-5-oxohexyl) phthalate (0.13 ng/ml in group A vs. 0.14 ng/ml in group B; P=.023) metabolites of di-isononyl phthalate, di-isodecyl phthalate, and di(2-ethylhexyl) phthalate used as plasticizers were significantly higher in the FF of women in group B compared with women in group A. CONCLUSION(S): The significant drop in mono-n-butyl phthalate and mono-ethyl phthalate levels, accumulated in the FF of 80 Indian women in group B reflects a decrease or absence of usage patterns of PCPs, including cosmetics and fragrances, thereby suggesting that these women may have deprioritized their use during the COVID-19 pandemic giving preference to personal hygiene and safety. Whereas the unprecedented increase in the use of flexible single-use plastic that became our first line of defense against the coronavirus during the COVID-19 pandemic might be responsible for the accumulation of significantly higher levels of mono-isononyl phthalate, mono-isodecyl phthalate, and mono(2-ethyl-5-oxohexyl) phthalate in FF of the same group.


Subject(s)
COVID-19 , Cosmetics , Environmental Pollutants , Phthalic Acids , Chromatography, Liquid , Communicable Disease Control , Cosmetics/analysis , Dibutyl Phthalate/metabolism , Environmental Exposure/analysis , Environmental Pollutants/analysis , Female , Follicular Fluid/chemistry , Humans , Life Style , Male , Pandemics , Phthalic Acids/analysis , Plasticizers/analysis , Plastics/analysis , Semen/chemistry , Tandem Mass Spectrometry
10.
J Nanobiotechnology ; 20(1): 41, 2022 Jan 21.
Article in English | MEDLINE | ID: covidwho-1643157

ABSTRACT

Early detection of viral pathogens by DNA-sensors in clinical samples, contaminated foods, soil or water can dramatically improve clinical outcomes and reduce the socioeconomic impact of diseases such as COVID-19. Clustered regularly interspaced short palindromic repeat (CRISPR) and its associated protein Cas12a (previously known as CRISPR-Cpf1) technology is an innovative new-generation genomic engineering tool, also known as 'genetic scissors', that has demonstrated the accuracy and has recently been effectively applied as appropriate (E-CRISPR) DNA-sensor to detect the nucleic acid of interest. The CRISPR-Cas12a from Prevotella and Francisella 1 are guided by a short CRISPR RNA (gRNA). The unique simultaneous cis- and trans- DNA cleavage after target sequence recognition at the PAM site, sticky-end (5-7 bp) employment, and ssDNA/dsDNA hybrid cleavage strategies to manipulate the attractive nature of CRISPR-Cas12a are reviewed. DNA-sensors based on the CRISPR-Cas12a technology for rapid, robust, sensitive, inexpensive, and selective detection of virus DNA without additional sample purification, amplification, fluorescent-agent- and/or quencher-labeling are relevant and becoming increasingly important in industrial and medical applications. In addition, CRISPR-Cas12a system shows great potential in the field of E-CRISPR-based bioassay research technologies. Therefore, we are highlighting insights in this research direction.


Subject(s)
CRISPR-Cas Systems/physiology , DNA, Viral/isolation & purification , Nucleic Acid Amplification Techniques , Animals , Biosensing Techniques/methods , Biosensing Techniques/trends , COVID-19/virology , DNA, Viral/analysis , Environmental Pollutants/analysis , Environmental Pollutants/isolation & purification , Food Contamination/analysis , Humans , Molecular Typing/methods , Molecular Typing/trends , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/trends , SARS-CoV-2/genetics , Virology/methods , Virology/trends , Virus Diseases/classification , Virus Diseases/diagnosis , Virus Diseases/virology
11.
Environ Health ; 20(1): 65, 2021 05 27.
Article in English | MEDLINE | ID: covidwho-1496182

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) and other dementias currently represent the fifth most common cause of death in the world, according to the World Health Organization, with a projected future increase as the proportion of the elderly in the population is growing. Air pollution has emerged as a plausible risk factor for AD, but studies estimating dementia cases attributable to exposure to fine particulate matter (PM2.5) air pollution and resulting monetary estimates are lacking. METHODS: We used data on average population-weighted exposure to ambient PM2.5 for the entire population of Sweden above 30 years of age. To estimate the annual number of dementia cases attributable to air pollution in the Swedish population above 60 years of age, we used the latest concentration response functions (CRF) between PM2.5 exposure and dementia incidence, based on ten longitudinal cohort studies, for the population above 60 years of age. To estimate the monetary burden of attributable cases, we calculated total costs related to dementia, including direct and indirect lifetime costs and intangible costs by including quality-adjusted life years (QALYs) lost. Two different monetary valuations of QALYs in Sweden were used to estimate the monetary value of reduced quality-of-life from two different payer perspectives. RESULTS: The annual number of dementia cases attributable to PM2.5 exposure was estimated to be 820, which represents 5% of the annual dementia cases in Sweden. Direct and indirect lifetime average cost per dementia case was estimated to correspond € 213,000. A reduction of PM2.5 by 1 µg/m3 was estimated to yield 101 fewer cases of dementia incidences annually, resulting in an estimated monetary benefit ranging up to 0.01% of the Swedish GDP in 2019. CONCLUSION: This study estimated that 5% of annual dementia cases could be attributed to PM2.5 exposure, and that the resulting monetary burden is substantial. These findings suggest the need to consider airborne toxic pollutants associated with dementia incidence in public health policy decisions.


Subject(s)
Dementia , Environmental Exposure , Environmental Pollutants , Particulate Matter , Aged , Aged, 80 and over , Cost of Illness , Dementia/economics , Dementia/epidemiology , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Environmental Exposure/economics , Environmental Pollutants/adverse effects , Environmental Pollutants/analysis , Environmental Pollutants/economics , Humans , Incidence , Middle Aged , Particulate Matter/adverse effects , Particulate Matter/analysis , Particulate Matter/economics , Quality of Life , Sweden/epidemiology
12.
Environ Sci Pollut Res Int ; 29(2): 1696-1711, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1482274

ABSTRACT

Cemetery leachate generated by the process of cadaveric decomposition is a significant contaminant of several matrices in the cemetery environment (soil, groundwater, and surface water). The biogenic amines cadaverine and putrescine stand out among the cemetery leachate contaminants, since they are potentially carcinogenic compounds. This review article presents a discussion of possible environmental impacts caused by the increase in deaths resulting from COVID-19 as its central theme. The study also aims to demonstrate the importance of considering, in this context, some climatic factors that can alter both the time of bodily decomposition and the longevity of the virus in the environment. Additionally, some evidence for the transmission of the virus to health professionals and family members after the patient's death and environmental contamination after the burial of the bodies will also be presented. Several sources were consulted, such as scientific electronic databases (NCBI), publications by government agencies (e.g., ARPEN, Brazil) and internationally recognized health and environmental agencies (e.g., WHO, OurWorldInData.org), as well as information published on reliable websites available for free (e.g., CNN) and scientific journals related to the topic. The data from this study sounds the alarm on the fact that an increase in the number of deaths from the complications of COVID-19 has generated serious environmental problems, resulting from Cemetery leachate.


Subject(s)
COVID-19 , Environment , Environmental Pollutants/analysis , Groundwater , Cemeteries , Humans , Pandemics , SARS-CoV-2
13.
Environ Sci Pollut Res Int ; 29(57): 85676-85687, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1482270

ABSTRACT

The megacities experience poor air quality frequently due to stronger anthropogenic emissions. India had one of the longest lockdowns in 2020 to curb the spread of COVID-19, leading to reductions in the emissions from anthropogenic activities. In this article, the frequency distributions of different pollutants have been analysed over two densely populated megacities: Delhi (28.70° N; 77.10° E) and Kolkata (22.57° N; 88.36° E). In Delhi, the percentage of days with PM2.5 levels exceeding the National Ambient Air Quality Standards (NAAQS) between 25 March and 17 June dropped from 98% in 2019 to 61% in 2020. The lockdown phase 1 brought down the PM10 (particulate matter having an aerodynamic diameter ≤ 10 µm) levels below the daily NAAQS limit over Delhi and Kolkata. However, PM10 exceeded the limit of 100 µgm-3 during phases 2-5 of lockdown over Delhi due to lower temperature, weaker winds, increased relative humidity and commencement of limited traffic movement. The PM2.5 levels exhibit a regressive trend in the highest range from the year 2019 to 2020 in Delhi. The daily mean value for PM2.5 concentrations dropped from 85-90 µgm-3 to 40-45 µgm-3 bin, whereas the PM10 levels witnessed a reduction from 160-180 µgm-3 to 100-120 µgm-3 bin due to the lockdown. Kolkata also experienced a shift in the peak of PM10 distribution from 80-100 µgm-3 in 2019 to 20-40 µgm-3 during the lockdown. The PM2.5 levels in peak frequency distribution were recorded in the 35-40 µgm-3 bin in 2019 which dropped to 15-20 µgm-3 in 2020. In line with particulate matter, other primary gaseous pollutants (NOx, CO, SO2, NH3) also showed decline. However, changes in O3 showed mixed trends with enhancements in some of the phases and reductions in other phases. In contrast to daily mean O3, 8-h maximum O3 showed a reduction over Delhi during lockdown phases except for phase 3. Interestingly, the time of daily maximum was observed to be delayed by ~ 2 h over Delhi (from 1300 to 1500 h) and ~ 1 h over Kolkata (from 1300 to 1400 h) almost coinciding with the time of maximum temperature, highlighting the role of meteorology versus precursors. Emission reductions weakened the chemical sink of O3 leading to enhancement (120%; 11 ppbv) in night-time O3 over Delhi during phases 1-3.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Environmental Pollutants , Humans , Air Pollutants/analysis , Cities , Environmental Pollutants/analysis , Environmental Monitoring , Communicable Disease Control , Air Pollution/analysis , Particulate Matter/analysis
14.
Sci Total Environ ; 787: 147550, 2021 Sep 15.
Article in English | MEDLINE | ID: covidwho-1458278

ABSTRACT

Chemical industries and oil refineries are known emission sources of environmental contaminants, such as metals/metalloids, polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), among others. Based on the toxicological potential of these pollutants, harmful health effects can be expected for the population living near these facilities. One of the largest chemical/petrochemical complexes in Europe is located in Tarragona County (Catalonia, Spain). In the last two decades, a number of investigations aimed at assessing the environmental impact of air pollutants potentially emitted by this industrial complex have been carried out. The present paper is a review of the available scientific information on the levels of air pollutants related with the activities of this chemical/petrochemical complex. Although there are currently some data on the environmental burdens of metals/metalloids, PAHs, VOCs and PCDD/Fs, there is an evident lack of specific biological monitoring studies on human health. Taking into account the amount of chemicals released to air and their toxicity, it is essential to perform an in-depth analysis of the current health status of the population living in Tarragona County.


Subject(s)
Air Pollutants , Environmental Pollutants , Polychlorinated Dibenzodioxins , Air Pollutants/analysis , Dibenzofurans , Dibenzofurans, Polychlorinated , Environment , Environmental Monitoring , Environmental Pollutants/analysis , Europe , Humans , Polychlorinated Dibenzodioxins/analysis , Spain
15.
Int J Hyg Environ Health ; 237: 113830, 2021 08.
Article in English | MEDLINE | ID: covidwho-1375960

ABSTRACT

Perfluorobutanoic acid (PFBA) belongs to the complex group of synthetic perfluoroalkyl substances (PFAS) which have led to ubiquitous environmental contamination. While some of the long-chain compounds accumulate in the human body, the short-chain compound PFBA was found to have a relatively short half-life in blood of a few days, in agreement with relatively low PFBA serum/plasma levels of roughly 0.01 ng/ml in European studies. Surprisingly, very high median levels of PFBA of 807 and 263 ng/g tissue for human lung and kidney autopsy samples, respectively, were reported in a paper of Pérez et al. (2013). This would question the concept of PFAS blood analysis reflecting the body burden of these compounds. To verify the results of high PFBA tissue accumulation in humans, we have analyzed PFBA in a set of 7 lung and 9 kidney samples from tumor patients with a different method of quantification, using high-resolution mass spectrometry with the accurate mass as analytical parameter. The only human sample with a quantifiable amount of PFBA (peak area more than twice above the analytical background signals) contained approximately 0.17 ng/g lung tissue. In the light of our results and considering the analytical problems with the short-chain compound PFBA exhibiting only one mass fragmentation, it appears to be likely that PFBA is not accumulating on a high level in human lung and kidney tissue. In general, the analysis of short-chain PFAS in complex matrices like food or tissue is very challenging with respect to instrumental quantification and possible sample contamination.


Subject(s)
Environmental Pollutants/analysis , Fluorocarbons/analysis , Kidney/chemistry , Lung/chemistry , Aged , Aged, 80 and over , Chromatography, High Pressure Liquid , Female , Humans , Male , Mass Spectrometry/methods , Middle Aged
16.
Sci Rep ; 11(1): 8363, 2021 04 16.
Article in English | MEDLINE | ID: covidwho-1189289

ABSTRACT

The new COVID-19 coronavirus disease has emerged as a global threat and not just to human health but also the global economy. Due to the pandemic, most countries affected have therefore imposed periods of full or partial lockdowns to restrict community transmission. This has had the welcome but unexpected side effect that existing levels of atmospheric pollutants, particularly in cities, have temporarily declined. As found by several authors, air quality can inherently exacerbate the risks linked to respiratory diseases, including COVID-19. In this study, we explore patterns of air pollution for ten of the most affected countries in the world, in the context of the 2020 development of the COVID-19 pandemic. We find that the concentrations of some of the principal atmospheric pollutants were temporarily reduced during the extensive lockdowns in the spring. Secondly, we show that the seasonality of the atmospheric pollutants is not significantly affected by these temporary changes, indicating that observed variations in COVID-19 conditions are likely to be linked to air quality. On this background, we confirm that air pollution may be a good predictor for the local and national severity of COVID-19 infections.


Subject(s)
COVID-19/pathology , Environmental Pollutants/analysis , Air Pollutants/analysis , COVID-19/epidemiology , COVID-19/virology , Humans , Models, Theoretical , Nitric Oxide/analysis , Ozone/analysis , Pandemics , Risk Factors , SARS-CoV-2/isolation & purification , Severity of Illness Index , Sulfur Dioxide/analysis
17.
Sci Total Environ ; 783: 146951, 2021 Aug 20.
Article in English | MEDLINE | ID: covidwho-1171923

ABSTRACT

The Lagoon of Venice is a continuously evolving ecosystem that rapidly responds to anthropic stressors. The UNESCO World Heritage site "Venice and its Lagoon", is one of the top tourist destinations in the world. Mass tourism increases marine litter, water traffic emissions, solid waste, and sewage release. Plastic marine litter is not only a major aesthetic problem diminishing tourists experience of Venice, it also leaches contaminants into the seawater. Since there is a dearth in the literature regarding microplastic leachable compounds and overtourism related pollutants, the project studied the Head Space-Solid Phase Micro Extraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) molecular fingerprint of volatile lagoon water pollutants, to gain insight into the extent of this phenomenon in August 2019. The chromatographic analyses enabled the identification of 40 analytes related to the presence of polymers in seawater, water traffic, and tourists habits. In Italy, on the 10th March 2020, the lockdown restrictions were enforced to control the spread of the SARS-CoV-2 infection; the ordinary urban water traffic around Venice came to a halt, and the ever-growing presence of tourists suddenly ceased. This situation provided a unique opportunity to analyze the environmental effects of restrictions on VOCs load in the Lagoon. 17 contaminants became not detectable after the lockdown period. The statistical analysis indicated that the amounts of many other contaminants significantly dropped. The presence of 9 analytes was not statistically influenced by the lockdown restrictions, probably because of their stronger persistence or continuous input in the environment from diverse sources. Results signify a sharp and encouraging pollution decrease at the molecular level, concomitant with the anthropogenic stress release, even if it is not possible to attribute quantitatively the VOCs load variations to specific sources (e.g., tourists' habits, urban water traffic, plastic pollution).


Subject(s)
COVID-19 , Environmental Pollutants , Volatile Organic Compounds , Water Pollutants, Chemical , Communicable Disease Control , Ecosystem , Environmental Monitoring , Environmental Pollutants/analysis , Humans , Italy , Microplastics , Plastics , SARS-CoV-2 , Seawater , Tourism , Water , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL